a2 United States Patent
Fu

US009465593B2

US 9,465,593 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR TESTING
BROWSER COMPATIBILITY

Applicant: Tencent Technology (Shenzhen)
Company Limited, Shenzhen,
Guangdong (CN)

Yanghui Fu, Shenzhen (CN)

TENCENT TECHNOLOGY
(SHENZHEN) COMPANY
LIMITED, Shenzhen (CN)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/752,222
Filed: Jun. 26, 2015
Prior Publication Data
US 2015/0301811 Al Oct. 22, 2015
Related U.S. Application Data

(71)

(72)
(73)

Inventor:

Assignee:

Notice:

")

@
(22)
(65)

(63) Continuation of application No.

PCT/CN2013/087607, filed on Nov. 21, 2013.

(30) Foreign Application Priority Data

Jan. 23, 2013

(51) Int. CL
GOGF 9/45
GOGF 11/36
U.S. CL
CPC oo

(CN) e 2013 1 0025121

(2006.01)
(2006.01)
(52)
GOG6F 8/427 (2013.01); GO6F 11/368

(2013.01)
Field of Classification Search

CPC ..o GOG6F 8/427;, GOG6F 11/3636
See application file for complete search history.

(58)
(56) References Cited
U.S. PATENT DOCUMENTS

6,202,062 B1*
6,202,201 B1*

3/2001 Cameron GO6F 17/30876
3/2001 Domi ...cccooevvviiinne GOGF 8/425
715/234
4/2004 Krug ..o GOG6F 17/30864
707/634

6,721,736 B1*

2002/0099738 Al* 7/2002 Grant GOGF 9/4443
715/234

2003/0023444 Al* 1/2003 St. John ... HO04M 3/382
704/270.1

2004/0015408 Al* 1/2004 Rauen, IV ... G06Q 10/10
705/26.41

2006/0069808 Al* 3/2006 Mitchell GO6F 17/30905
709/246

2007/0226314 Al* 9/2007 Eick ... GO6F 17/30896
709/217

2010/0082743 Al* 4/2010 Zengcccceveennnne HO4L 29/06
709/203

2010/0281537 Al* 11/2010 Wangcceeeennie GOG6F 9/468
726/22

2011/0289479 Al1* 11/2011 Pletter GO6F 17/30575
717/122

2012/0233668 Al* 9/2012 Leafe GOG6F 9/5022
726/4

2012/0272178 Al* 10/2012 Oygard GO6F 17/30884
715/781

2013/0124545 Al1* 5/2013 Holmberg GO6F 17/30244
707/756

2013/0198612 Al* 82013 Ceze GO6F 17/30899
715/235

2014/0052617 Al* 2/2014 Chawla G06Q 10/10
705/39

2014/0189676 Al* 7/2014 Mahajan GOG6F 8/43
717/170

2015/0347274 Al* 12/2015 Taylor ... GOG6F 11/362
717/125

* cited by examiner

Primary Examiner — Chameli Das

(74) Attorney, Agent, or Firm — Anova Law Group,
PLLC

(57) ABSTRACT

A method and an apparatus for testing browser compatibility
are provided. The method may include pre-processing
source code of a webpage to determine a code type. A
compatibility rule library may be obtained according to the
code type. Further, a syntax parsing may be conducted on
the source code to obtain a syntax tree of the source code.
The browser compatibility of the webpage may be tested by
conducting a static analysis of the source code based on the
compatibility rule library and the syntax tree. The disclosed
method and apparatus for testing browser compatibility can
automatically conduct static analysis of the webpage source
code to test browser compatibility, which is simple and
inexpensive.

20 Claims, 3 Drawing Sheets

pre-processing source code of the webpage 101

to determine a code type

L

obtaining a compatibility rule library
according to the code type

’/ 102

r103

conducting syntax parsing of the source
code to obtain a syntax tree of the source
code

conducting static testing of the source code / 104
based on the compatibility rule library and
the syntax tree to test browser
compatibility of the webpage

105

| outputting a result of the static testing [

U.S. Patent Oct. 11, 2016 Sheet 1 of 3 US 9,465,593 B2

pre-processing source code of the webpage /_ 101
to determine a code type

(=

- - . 102
obtaining a compatibility rule library /_ 0
according to the code type

(=

conducting syntax parsing of the source /-103
code to obtain a syntax tree of the source
code

(—

conducting static testing of the source code 104
based on the compatibility rule library and /
the syntax tree to test browser
compatibility of the webpage

(i

/ 105

outputting a result of the static testing

FIG 1

U.S. Patent Oct. 11, 2016 Sheet 2 of 3 US 9,465,593 B2

/201

conducting lexical analysis
of the source code to obtain
a token sequence

202
| ;

obtaining the first token in
the token sequence

///’203

if the first
token is “<”

yES

Y
the code type is

HTML

204

no

T the firs
token
“{” Or

yESs

¥ |:”

A 4

the code type is
JSON

/ no
206
ryes

the code type is

1T the first
_token is“@” , “*”

(13 b4 “ o, ”

or

CSS o ////209
zog//> the code type is
JavaScript

FIG 2

U.S. Patent Oct. 11, 2016 Sheet 3 of 3 US 9,465,593 B2

l

webpage compatibility SY'.‘tt_aX treed |
source code rule library acquist 'gg module
l 4 \ 4
code type compatibility rule testin
acquisition module »| library acquisition — moduleg34
31 module 32
v
outputting
module 35

FIG 3

US 9,465,593 B2

1
METHOD AND APPARATUS FOR TESTING
BROWSER COMPATIBILITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Patent
Application No. PCT/CN2013/087607, entitled “Method
and Apparatus for Testing Browser Compatibility,” filed on
Nov. 21, 2013. This application claims the benefit and
priority of Chinese Patent Application No. 201310025121.7,
entitled “Method and Apparatus for Testing Browser Com-
patibility,” filed on Jan. 23, 2013. The entire disclosures of
each of the above applications are incorporated herein by
reference.

TECHNICAL FIELD

The present invention relates to the internet, and more
particularly, to a method and apparatus for testing browser
compatibility.

BACKGROUND

As the internet develops, more users are using their
preferred web browsers to browse the internet. Because of
the wide variety of web browsers available, and that a
number of users are still using old versions of browsers,
webpage developers need to have the ability to develop
webpages that are browser compatible, where the appear-
ance and functions of each webpage is uniform across all
browser environments.

To ensure uniformity, webpages need to be tested under
different browsers. Even though some automated testing
tools exist, they still require the tester to run the testing tool
in each browser environment. Furthermore, current testing
tools do not pinpoint to the tester the problems if the
webpage is determined to be incompatible across browsers.
The tester has to determine where it is incompatible, which
requires a high level of skill and a great amount of time and
effort from the tester.

Thus, there is a need to provide a simple and low
maintenance method and apparatus for testing browser com-
patibility to address the issues in the prior art.

SUMMARY OF THE INVENTION

To address the issues in prior art where browser compat-
ibility tests are complex and high maintenance, the embodi-
ments of the present invention provide a method and appa-
ratus for testing browser compatibility through static
analysis of the webpage source code.

In accordance with the embodiments of the present inven-
tion, a method for testing browser compatibility is provided,
the method comprising: pre-processing source code of the
webpage to determine a code type; obtaining a compatibility
rule library according to the code type; conducting syntax
parsing of the source code to obtain a syntax tree of the
source code; and conducting static analysis of the source
code based on the compatibility rule library and the syntax
tree.

In accordance with the embodiments of the present inven-
tion, an apparatus for testing browser compatibility is pro-
vided, the apparatus comprising: a code type acquisition
module configured to pre-process source code of the web-
page to determine a code type; a compatibility rule library
acquisition module configured to obtain a compatibility rule

10

15

20

25

30

35

40

45

50

55

60

65

2

library according to the code type; a syntax tree acquisition
module configured to conduct syntax parsing of the source
code to obtain a syntax tree of the source code; and a testing
module configured to conduct static analysis of the source
code based on the compatibility rule library and the syntax
tree.

In accordance with the embodiments of the present inven-
tion, a computer-readable medium having stored thereon
computer-executable instructions, said computer-executable
instructions for performing a method for testing browser
compatibility is provided, the method comprising: pre-
processing source code of the webpage to determine a code
type; obtaining a compatibility rule library according to the
code type; conducting syntax parsing of the source code to
obtain a syntax tree of the source code; and conducting static
analysis of the source code based on the compatibility rule
library and the syntax tree.

As compared to prior art technology, in accordance with
the method and apparatus for testing browser compatibility
of the present invention, static analysis of the webpage
source code is conducted to test browser compatibility,
which is simple and inexpensive. The present invention
addresses the issues of complex operations and high main-
tenance costs in the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

To better illustrate the technical features of the embodi-
ments of the present invention, various embodiments of the
present invention will be briefly described in conjunction
with the accompanying drawings.

FIG. 1 is an exemplary flowchart for a method for testing
browser compatibility of a webpage in accordance with an
embodiment of the present invention.

FIG. 2 is a detailed exemplary flowchart for Step 101 in
the method for testing browser compatibility of a webpage
in accordance with an embodiment of the present invention.

FIG. 3 is an exemplary schematic diagram for the appa-
ratus for testing browser compatibility of a webpage in
accordance with another embodiment of the present inven-
tion.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

To better illustrate the purpose, technical features, and
advantages of the embodiments of the present invention,
various embodiments of the present invention will be further
described in conjunction with the accompanying drawings.

As show in FIG. 1, an exemplary flowchart for a method
for testing browser compatibility of a webpage in accor-
dance with an embodiment of the present invention is
provided. The method for testing browser compatibility
includes the following steps:

Step 101: pre-processing source code of the webpage to
determine a code type.

Step 102: obtaining a compatibility rule library according
to the code type.

Step 103: conducting syntax parsing of the source code
and obtaining a syntax tree of the source code.

Step 104: conducting static analysis of the source code
based on the compatibility rule library and the syntax tree to
test browser compatibility.

Step 105: outputting of the browser compatibility test
results.

The method for testing browser compatibility in this
embodiment concludes at step 105.

US 9,465,593 B2

3

The implementation details of the steps in the method for
testing browser compatibility in this embodiment will be
further described below.

As shown in FIG. 2, a detailed exemplary flowchart for
Step 101 of a method for testing browser compatibility of a
webpage in accordance with the embodiment of the present
invention is provided. Step 101 further comprises Steps 201,
202, 203. 204, 205, 206, 207, 208, and 209.

In Step 201, lexical analysis of the source code is con-
ducted to obtain a token sequence of the source code. Here,
each token is a character, which is the smallest unit that
forms the source code. The token may be analyzed by a
lexical analyzer. The lexical analyzer reads characters of the
webpage source code from left to right and thereby scans the
characters in a source code stream. Then the lexical analyzer
identifies the token based on the structure of the source code
and obtains the token sequence of the source code.

The code type of the webpage is subsequently determined
based on the token sequence of the source code. In Step 202,
the first token of the token sequence is obtained. In Steps 203
and 204, if the first token is “<”, then the code type is
determined to be HTML (Hypertext Markup Language)
(source code of HTML usually begins with “<”). In Steps
205 and 206, if the first token is “{” or “[”, then the code type
is determined to be JSON (JavaScript Object Notation)
(source code of JSON usually begins with “{” or “[). In
Steps 207 and 208, if the first token is “@”, “*”, “#”, “.” or
“:”, then the code type is determined to be CSS (Cascading
Style Sheets) (source code of CSS is usually “@”, “*”, “#”,
“>or “.”). In step 209, if the first token is none of the above,
then the code type is determined to be JavaScript. This is but
an exemplary method to determine the code type through
lexical characteristics of the source code, and other methods
to determine the code type through lexical characteristics of
the source code can also be used.

Step 102 is next.

In Step 102, a compatibility rule library is obtained
according to the code type, wherein the compatibility rule
library includes a plurality of regular expressions and a
plurality of logical relationships among the regular expres-
sions. The compatibility rules can be stored as key-value
pairs in the JSON file. Different code types have different
type compatibility rule libraries, and the appropriate com-
patibility rule library is selected in this step.

In Step 103, the source code is parsed to obtaining a
syntax tree of the source code. Here, syntax parsing com-
bines token into syntactic phrases based on lexical analysis,
such as “program”, “statement” and “expression”. Syntax
parsing may be done through a syntax parser that uses a
top-down operator precedence algorithm. Different types of
source code can be parsed using different syntax parsers to
obtain a syntax tree for the source code. The algorithm for
obtaining the syntax tree can be any algorithm that is
currently known in the field, which will not be further
described here.

Step 104 is next.

In Step 104, static analysis of the source code is con-
ducted based on the compatibility rule library retrieved in
Step 102 and the syntax tree retrieved in Step 103 to test
browser compatibility.

The compatibility rule library can be a plurality of regular
expressions, and the logical relationships among the regular
expressions, such as “or”, “and” or “but not”. If “or” logic
is used, then a source code is incompatible if it does not
match at least one regular expression from the plurality of
regular expressions, so the source code must match all
regular expressions to be compatible. If “and” logic is used,

10

15

20

25

30

35

40

45

50

55

60

4

then a source code is incompatible if it does not match any
of the regular expressions, so the source code must match at
least one of the plurality of regular expressions to be
compatible. If “but not” logic is used, then a source code is
incompatible if it does not match some regular expressions
from the plurality of regular expressions, so the source code
is compatible if all regular expressions are matched or
mismatched. For example, under the “but not” logic, if a
source code containing sequence A is incompatible with a
certain browser, but the source code becomes compatible if
it also contains sequence B, then the source code is com-
patible if the source code contains either both A and B, or
neither A or B.

If compatibility is determined through a single regular
expression, the regular expression may include inclusion
operation, comparison operation, or replacement operation.
The inclusion operation is used to determine the whether one
section of source code includes the another section of source
codes; the comparison operation is used to compare the
attribute value of relevant source codes; and the replacement
operating is used to replace certain variables of the regular
expression with the result of an operation to conduct further
compatibility testing.

It is obvious that the compatibility rule library is not
limited to the rules in the above examples, and may include
other rules, and that these rules be added, deleted or modi-
fied based on need. In this step, a syntax tree of the source
code is used to determine the code type of the source code,
and a compatibility rule library is used to conduct static
analysis of the source code to test browser compatibility,
which significantly reduces the time required for testing the
compatibility of the webpage.

Step 105 is next.

In Step 105, the test program will output the results of the
browser compatibility test, which can include the location of
the mismatched source code, the reason of mismatch, and
the corresponding rules from the compatibility rule library.
The webpage developer may amend the incompatible sec-
tions of the source code according to the test results to make
the webpage browser compatible.

As shown in FIG. 3, an exemplary schematic diagram for
an apparatus for testing browser compatibility of a webpage
in accordance with another embodiment of the present
invention is provided. The apparatus for testing browser
compatibility includes a code type acquisition module 31, a
compatibility rule library acquisition module 32, a syntax
tree acquisition module 33, a testing module 34, and an
outputting module 35. The code type acquisition module 31
can be used for pre-processing the source code of the
webpage to obtain a code type. The compatibility rule
library acquisition module 32 can be used for acquiring the
applicable compatibility rules based on the code type. The
syntax tree acquisition module 33 can be used for obtaining
the syntax tree of the source code based on syntax parsing
the source code. The testing module 34 can be used for static
analysis of the source code based on the compatibility rule
library and syntax tree. The outputting module 35 can be
used to output the result of the static analysis.

During the operation of the apparatus for testing browser
compatibility in this embodiment, the code type acquisition
module 31 conducts lexical analysis of the source code to
obtain a token sequence of the source code. The code type
acquisition unit 31 also includes a code type acquisition unit
for acquiring the code type based on the token sequence of
the source code. First, the first token of the token sequence
is obtained. If the first token is “<”, then the code type is
determined to be HTML (Hypertext Markup Language)

US 9,465,593 B2

5
(source code of HTML usually begins with “<”). If the first
token is “{> or “[”, then the code type is determined to be

JSON (JavaScript Object Notation) (source code of JSON
usually begins with “{> or “[”). If the first token is “@”, “*”,

“H#7, <> or ., then the code type is determined to be CSS
(Cascading Style Sheets) (source code of CSS is usually
“@?, <*, 7, < or o). If the first token is none of the

above, then the code type is determined to be JavaScript.

Subsequently, the compatibility rule library acquisition
module 32 obtains the applicable compatibility rules based
on the code type. The syntax tree acquisition module 33 then
obtains the syntax tree of the source code based on syntax
parsing the source code. The testing module 34 conducts
static analysis of the source code based on the compatibility
rule library and syntax tree, wherein the compatibility rule
library comprises a plurality of regular expressions and a
plurality of logical relationships among the regular expres-
sions in a JSON file. Finally, the outputting module 35
outputs the result of the static analysis.

The operational principle of the embodiment of the appa-
ratus for testing browser compatibility is identical or similar
to that described in the preferred embodiment of the method
for testing browser compatibility; and the description of the
method embodiment can be referenced for the implementa-
tion details of the apparatus embodiment.

Below is a section of webpage source code used to
illustrate the processes of the method and apparatus for
testing browser compatibility in accordance with the present
invention.

The source code is as follows:

<IDOCTYPE HTML>
<htm!>
<head>
<meta http-equiv="Content-Type” content="text/html; charset=utf-8”/>
<style type="text/css”>
body {
color: blue;

¥

ht {
font-size: 18px;

¥

</style>

<script type="text/javascript”>

window.onload=function() {
var $header=document. getElementByld(“header”);
alert($header.currentStyle. fontWeight);
alert($header.currentStyle.fontSize);
alert($header.currentStyle.color);

</script>
</head>
<body>
<hl id="header” style="color:red;”>Header 1</h1>
</body>
</html>

First, lexical analysis of the source code is conducted to
obtain the token sequence of the source code. The first token
is “<”, so the code type is HTML. Second, the source code
is parsed to obtain the syntax tree of the source code.
Because browsers such as Firefox, Chrome, and Safari do
not support currentStyle statements, and browsers such as
1IE6, IE7 and IE8 do not support getComputedStyle state-
ments, “but not” logic is used for these two statements to
determine browser compatibility, i.e., the webpage is com-
patible only when currentStyle statements and getComput-
edStyle statements are both present (webpage supports all
browsers), or both absent (webpage has neither statements).
Lastly, the result of the static analysis results is outputted.

10

15

20

25

30

35

40

45

50

55

60

65

6

Web developers may take appropriate actions to fix com-
patibility problems according to the static analysis results.

In accordance with the embodiments of the present inven-
tion, the method and apparatus for testing browser compat-
ibility conducts static analysis of the source code for testing
browser compatibility. As the source code does not need to
be tested for each browser, the testing process is simple and
of'low cost, which addresses the issue of complex operations
and high maintenance costs in the prior art.

Note that one or more of the functions described above
can be performed by software or firmware stored in memory
and executed by a processor, or stored in program storage
and executed by a processor. The software or firmware can
also be stored and/or transported within any computer-
readable medium for use by or in connection with an
instruction execution system, apparatus, or device, such as a
computer-based system, processor-containing system, or
other system that can fetch the instructions from the instruc-
tion execution system, apparatus, or device and execute the
instructions. In the context of this document, a “computer-
readable medium” can be any medium that can contain or
store the program for use by or in connection with the
instruction execution system, apparatus, or device. The
computer readable medium can include, but is not limited to,
an electronic, magnetic, optical, electromagnetic, infrared,
or semiconductor system, apparatus or device, a portable
computer diskette (magnetic), a random access memory
(RAM) (magnetic), a read-only memory (ROM) (magnetic),
an erasable programmable read-only memory (EPROM)
(magnetic), a portable optical disc such a CD, CD-R, CD-
RW, DVD, DVD-R, or DVD-RW, or flash memory such as
compact flash cards, secured digital cards, USB memory
devices, memory sticks, and the like.

The various embodiments of the present invention are
merely preferred embodiments, and are not intended to limit
the scope of the present invention, which includes any
modification, equivalent, or improvement by a person of
ordinary skill in the art that does not depart from the spirit
and principles of the present invention.

What is claimed is:

1. A method for testing browser compatibility of a web-
page executed by a processor of a computation terminal,
comprising:

pre-processing source code of the webpage to determine

a code type;

obtaining, from a memory of the computation terminal, a

compatibility rule library according to the code type;

conducting syntax parsing of the source code to obtain a

syntax tree of the source code; and

conducting static analysis of the source code based on the

compatibility rule library and the syntax tree;
wherein:

the compatibility rule library comprises a plurality of

regular expressions and a plurality of logical relation-
ships among the regular expressions;

the regular expressions include at least: a first pattern

matching expression that identifies whether a first sec-
tion of code exists in the source code, and a second
pattern matching expression that identifies whether a
second section of code exists in the source code;

the logical relationships include at least a logical relation-

ship corresponding to the first pattern matching expres-
sion and the second pattern matching expression; and

a result of applying the logical relationship corresponding

to the first pattern matching expression and the second
pattern matching expression indicates whether the
source code is incompatible with one or more browsers.

US 9,465,593 B2

7

2. The method of claim 1, wherein the compatibility rule
library comprises a plurality of key-value pairs.

3. The method of claim 1, wherein the step of pre-
processing source code of the webpage to obtain a code type
further comprises:

conducting lexical analysis of the source code to obtain a

token sequence of the source code; and

determining the code type of the webpage on the token

sequence of the source code.

4. The method of claim 3, wherein the step of determining
the code type of the webpage on the token sequence of the
source code further comprises:

obtaining the first token in the token sequence;

determining the code type to be HTML if the first token

is “<”

determining the code type to be JSON if the first token is

“I” or “[”,
determining the code type to be CSS if the first token is
selected from a group consisting of “@?”, “*” “#7, «.”
and “:”; and
determining the code type to be JAVASCRIPT if the first
token is not selected from a group consisting of “<”,
<247 “@, <, <4, « and <

5. The method of claim 1, further comprising:

outputting a result of the static analysis.

6. The method of claim 1, wherein:

the logical relationships include at least one of an OR

logic, an AND logic, and an XOR logic.

7. The method of claim 6, wherein:

when the logical relationship corresponding to the first

pattern matching expression and the second pattern
matching expression is the OR logic, the source code is
determined to be incompatible if either one of the first
section of code and the second section of code does not
exist in the source code;

when the logical relationship corresponding to the first

pattern matching expression and the second pattern
matching expression is the AND logic, the source code
is determined to be incompatible if neither one of the
first section of code and the second section of code exist
in the source code; and

when the logical relationship corresponding to the first

pattern matching expression and the second pattern
matching expression is the XOR logic, the source code
is determined to be incompatible if only one of the first
section of code and the second section of code exist in
the source code.

8. The method of claim 1, wherein the regular expressions
further include a single regular expression that determines
whether the source code is incompatible, and the method
further comprising:

when the single regular expression is an inclusion opera-

tion, determining whether the source code is incom-
patible according to whether one section of source code
includes another section of source code;

when the single regular expression is a comparison opera-

tion, determining whether the source code is incom-
patible by comparing an attribute value of one section
of source code with a set value; and

when the single regular expression is a replacement

operation, replacing a variable in the single regular
expression with a result from a previous regular expres-
sion to conduct further compatibility testing.

9. An apparatus for testing browser compatibility of a
webpage, comprising at least one processor, memory, and a
plurality of program modules stored in the memory and to be

5

10

15

20

25

30

35

40

45

50

55

60

8

executed by the at least one processor, the plurality of
program modules comprising:

a code type acquisition module configured to pre-process
source code of the webpage to determine a code type;

a compatibility rule library acquisition module configured
to obtain a compatibility rule library according to the
code type;

a syntax tree acquisition module configured to conduct
syntax parsing of the source code to obtain a syntax tree
of the source code; and

a testing module configured to conduct static analysis of
the source code based on the compatibility rule library
and the syntax tree;

wherein:

the compatibility rule library comprises a plurality of
regular expressions and a plurality of logical relation-
ships among the regular expressions;

the regular expressions include at least: a first pattern
matching expression that identifies whether a first sec-
tion of code exists in the source code, and a second
pattern matching expression that identifies whether a
second section of code exists in the source code;

the logical relationships include at least a logical relation-
ship corresponding to the first pattern matching expres-
sion and the second pattern matching expression; and

a result of applying the logical relationship corresponding
to the first pattern matching expression and the second
pattern matching expression indicates whether the
source code is incompatible with one or more browsers.

10. The apparatus for claim 9, wherein the compatibility
rule library comprises the plurality of regular expressions
and the plurality of logical relationships among the regular
expressions in a JSON file.

11. The apparatus for claim 9, wherein the compatibility
rule library comprises a plurality of key-value pairs.

12. The apparatus for claim 9, wherein the code type
acquisition module further comprises:

a lexical analysis unit configured to conduct lexical analy-
sis of the source code to obtain the token sequence of
the source code; and

a code type acquisition unit for configured to determine
the code type of the webpage on the token sequence of
the source code.

13. The apparatus for claim 12, wherein code type acqui-

sition module is further configured for:

obtaining the first token in the token sequence;

determining the code type to be HTML if the first token
is “<’;

determining the code type to be JSON if the first token is
“” or “[”, determining the code type to be CSS if the
first token is selected from a group consisting of “@”,
o g« and) and

determining the code type to be JAVASCRIPT if the first
token is not selected from a group consisting of “<”,
“L2 407, @, <, H, “ and <

14. The apparatus for claim 9, further comprising:

an outputting module configured to output a result of the
static analysis.

15. A non-transitory computer-readable medium having
stored thereon computer-executable instructions, said com-
puter-executable instructions for performing a method for
testing browser compatibility of a webpage, the method
comprising:

pre-processing source code of the webpage to determine
a code type;

obtaining a compatibility rule library according to the
code type;

US 9,465,593 B2

9

conducting syntax parsing of the source code to obtain a
syntax tree of the source code;
conducting static analysis of the source code based on the
compatibility rule library and the syntax tree;
wherein:
the compatibility rule library comprises a plurality of
regular expressions and a plurality of logical relation-
ships among the regular expressions;
the regular expressions include at least: a first pattern
matching expression that identifies whether a first sec-
tion of code exists in the source code, and a second
pattern matching expression that identifies whether a
second section of code exists in the source code;
the logical relationships include at least a logical relation-
ship corresponding to the first pattern matching expres-
sion and the second pattern matching expression; and
a result of applying the logical relationship corresponding
to the first pattern matching expression and the second
pattern matching expression indicates whether the
source code is incompatible with one or more browsers.
16. The computer-readable medium of claim 15, wherein
the compatibility rule library comprises the plurality of
regular expressions and the plurality of logical relationships
among the regular expressions in a JSON file.
17. The computer-readable medium of claim 16, wherein
the compatibility rule library comprises a plurality of key-
value pairs.

5

15

20

10

18. The computer-readable medium of claim 15, wherein
the step of pre-processing source code of the webpage to
obtain a code type further comprises:

conducting lexical analysis of the source code to obtain

the token sequence of the source code; and
determining the code type of the webpage on the token
sequence of the source code.

19. The computer-readable medium of claim 18, wherein
the step of determining the code type of the webpage on the
token sequence of the source code further comprises:

obtaining the first token in the token sequence;

determining the code type to be HTML if the first token
18 “<7;

determining the code type to be JSON if the first token is
“” or “[”, determining the code type to be CSS if the
first token is selected from a group consisting of “@”,
o g« and) and

determining the code type to be JAVASCRIPT if the first
token is not selected from a group consisting of “<”,
“L2 407, @, <, H, “ and <

20. The computer-readable medium of claim 15, further
comprising:

outputting a result of the static analysis.

#* #* #* #* #*

